Besoin d'une information ?

RECHERCHEZ LE CONTENU QUI VOUS INTÉRESSE :
Logo Le Mans UniversitéLogo Le Mans Université
Nous recrutonsNous recrutonsNous recrutons
Rechercher

International Master's Degree in Electroacoustics

Plus d'infos

Crédits ECTS : 120

Public concerné : Formation initiale

Présentation

Présentation

The International Master's Degree in ElectroAcoustics offers students the possibility to learn the fundamentals in electroacoustics and in related fields.

The program offers a specialized education in:

  • electroacoustics
  • mechanics and materials
  • transducers (loudspeakers, microphones)
  • acoustic loads and acoustic radiation
  • real time signal processing

The master’s program prepares students for careers dealing with different aspects of electroacoustics which require strong analytical and research skills, whether in the public or private sectors and for PhD studies or research activities.

Objectifs

*

Savoir-faire et compétences

*

Informations supplémentaires

Pour obtenir plus d’information sur la formation, contacter:

Master 1

  • Manuel Melon (imdeacoustics @ univ-lemans.fr) (responsable de formation), Laurence Couturier (imdeacoustics @ univ-lemans.fr) (coordinatrice administrative) 

 

Master 2

  • Bruno Gazengel (imdeacoustics @ univ-lemans.fr)  (responsable de formation), Laurence Couturier (imdeacoustics @ univ-lemans.fr) (coordinatrice administrative) 

Programme

Contenu de la formation

*

Organisation de la formation

Tout déplierTout fermer

  • Semestre 1 M Acoustique - Electroacoustique
    • Refresh (5 crédits ECTS)
      • Acoustics refresh (1 crédits ECTS)Description : Basic notions about waves, sound and hearing - Harmonic plane waves, reflection and transmission of plane waves - Pressure, particle velocity, power, intensity and levels (dB) - Spherical waves and multipoles - Dissipation mechanisms and how to take them into account - Eigenmodes and resonance
        Objectifs : To know the basic concepts and vocabulary used in acoustics
        Contrôle des connaissances : MCQ - 1 hour - no documents allowed
        Acoustics UMTICE Course
        Langue : EN
        Lieu : Le Mans
      • Acoustic Experiments refresh (1 crédits ECTS)Description : Plane wave propagation: Outgoing and incoming wave characterization - Estimation of reflection coefficient of a single duct - comparison with theoretical law - Estimation of reflection and transmission of a discontinuity between two ducts connected in series - comparison with theoretical law | Spherical wave propagation : Pressure level attenuation characterization - comparison with theoretical law - Estimation of acoustic power emitted by a source - Estimation of loudspeaker efficiency (%) 
        Objectifs : At the end of this project, students should be characterize experimentally the acoustic propagation of plane waves and spherical waves. 
        Contrôle des connaissances : practical exam - 2 hours - all documents allowed
        Informations complémentaires : Plane Plane and Spherical Waves, S-89.3310 Acoustics and the Physics of Sound, Lecture 6, Archontis Politis, Department of Signal Processing and Acoustics, Aalto University School of Electrical Engineering 
        On-line course
        Langue : EN
        Lieu : Le Mans
      • Vibration refresh (1 crédits ECTS)Description : Free vibrations of single degree of freedom (undamped and damped) - Electromechanical analogy : RLC circuit - Forced vibrations of single degree of freedom (undamped and damped) - Two degrees of freedom: eigenvalues ans eigen modes, modal analyss, frequency response function - Generalization with multiple degrees of freedom
        Objectifs : To know the basic concepts in vibrations of two and N degrees of freedom systems
        Contrôle des connaissances : MCQ - 2 hours - no documents allowed
        Informations complémentaires : Literature References : S. Rao, Mechanical vibrations, Paris, Prentice Hall , 2011 -Leonard Meirovitch, Principles and techniques of vibrations, New Jersey : Prentice Hall , 1997 - S. Graham Kelly, Mechanical vibrations :  theory and applications, Stamford :  Cengage Learning , cop. 2012
        On-line course
        Langue : EN
        Lieu : Le Mans
      • Signal analysis refresh (1 crédits ECTS)Description : About 100 exercises (half with CT signal processing, half with DT signal processing), currently presented in the form of MCQs.
        Objectifs : At the end of the course, the student has to be able to apply the basic signal processing tools (signal + systems) for deterministic continuous-time (CT) and discrete-time (DT) signal processing (SP), in the context of analytic resolution of basic SP prob- lems (based on typical SP concepts, such as convolution, Fourier transforms, sampling, system analysis)
        Contrôle des connaissances : Written exam - 1 hour 30 min - Personal notes allowed (including the database)
        Informations complémentaires : Literature References : MIT OpenCourseWare, Signals and Systems, D. Freeman, 6.003
        On-line course
        Langue : EN
        Lieu : Le Mans
      • Matlab refresh (1 crédits ECTS)Description : Plane wave propagation simulation - Spherical wave propagation simulation and analysis
        Objectifs : Be able to build a simple Matlab code (read/write a file, plot a curve, program equations)
        Contrôle des connaissances : Practical exam - 2 hours - no documents allowed
        Langue : EN
        Lieu : Le Mans
      • Mathematics refreshDescription : This courses concerns basics of mathematics in Finite dimension (Bachelor level).
        Objectifs : At the end of the course, the student has to be able to manipulate matrices, complex numbers, to solve differential equations
        Contrôle des connaissances : Written exam (2 hours) - Personal notes allowed
        Informations complémentaires : The course of Stephen Boyd, especially Part I and II
        On-line course
        Enseignement : En présence
        Langue : EN
        Lieu : Le Mans
    • Electronics refresh (1 crédits ECTS)Description : Electronic circuit theory, diodes, impulse response, resonant circuits, active filters, transistor. . .
      Objectifs : Be able to model a passive electrical network (be able to predict impedance and Transfer function) -  Be able to model a active analogical electrical network using Op. Amp. (be able to predict impedance and Transfer function)
      Langue : EN
      Lieu : Le Mans
    • Instrumentation refresh (1 crédits ECTS)Description : Electronics : Simulation of systems using LT Spice (passive filter, active filter, envelope detector) -   Implementation and measurement of the systems | Transducer : Study of usual signals for measurement  - Loudspeaker transfer functions measurement (electrical impedance, pressure response) - Loudspeaker sensitivity estimation from pressure response
      Objectifs : Be able to measure the characteristics of an acoustic system (spectrum analysis, transfer function analysis) -  Be able to make a simulation and to measure the response of an analog electrical network (passive loudspeaker filter) -  Be able to make a simulation and to measure the response of an analog active network using Op. Amp (active loudspeaker filter)
      Contrôle des connaissances : Practical exam -  2 hours - all documents allowed
      Informations complémentaires : Literature References : Dominique Placko, Fundamentals of Instrumentation and Measurement, John Wiley & Sons, 1 mars 2013 - 532 pages -  Jacob Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, Springer Science & Business Media, 22 sept. 2010 - 663 pages -  MICHAEL SAYER, ABHAI MANSINGH, MEASUREMENT, INSTRUMENTATION AND EXPERIMENT DESIGN IN PHYSICS AND ENGINEERING, PHI Learning Pvt.  Ltd., 1 janv.  1999 -380 pages -  Charles P. Wright, Applied Measurement Engineering: How to Design Effective Mechanical Measurement Systems, Prentice Hall PTR, 1995 - 402 pages - Bob Metzler, Audio Measurement Handbook, Audio Precision, 1993 - 178 pages
      On-line course
      Langue : EN
      Lieu : Le Mans
    • Acoustics I (6 crédits ECTS)Description : Four lectures (around 10 hours) and four series of exercises related to each lecture (around 30 hours). The titles of lecture are (see lecture notes on UMTICE for more details): Fundamental equations of acoustics (in fluids) - Plane waves - Cylindrical and spherical waves. - Guided waves - Modal analysis
      Objectifs : The main objective of this course is that students have solid backgrounds on fundamental aspects of acoustics including : The fundamental equations of acoustics (backgrounds in fluid mechanics and thermodynamics) - The derivation of the wave equation (mostly for the usual case of uniform fluids at rest) - The acoustics of the gas column (resonance, free oscillations, coupling etc..) - Reflexion, transmission, and diffraction phenomena - Guided waves and the modal theory - Spherical and cylindrical waves (sound radiation, diffraction, guided waves in cylindrical ducts, etc...)
      Contrôle des connaissances : Written exam (1 written exam at mid-part weight 1, and 1 final exam weight 2 ) - 1 hour (exam 1) - 2 hours (exam 2) - Personal notes allowed , lecture notes
      Informations complémentaires : Literature References : A.D. Pierce, ”Acoustics, an introduction to its physical principles and applications” chapters 1, 3-5, et 7 - C. Potel, M. Bruneau, ”Acoustique Générale”, chapters 1, 3-6 (in French) - S. Temkin, ”Elements of Acoustics”, chapters 1-4
      On-line course
      Langue : EN
      Lieu : Le Mans
    • Transducers basics (2 crédits ECTS)Description : Lumped Elements modelling of Mechanical systems (1 DOF, 2 DOF) - Lumped Elements modelling of Acoustical systems (open or closed duct, radiation) - Equivalent circuits for coupling (electricity to mechanics and mechanics to acoustics) - Lumped Elements modelling of an electrodynamic shaker - Lumped Elements modelling of an electrodynamic loudspeaker on infinite baffle
      Objectifs : Expected knowledge : –    know the usual characteristics of an electroacoustic chain –    know what is lumped elements modelling –    know the equivalent components describing and mechanical and acoustical behaviour - Expected Skills. Be able to:  –    model an electroacoustic system with an analytical approach and equivalent circuits –    analyze a mechanical system and represent the equivalent electrical diagram. –    calculate analytically the response of a mechanical system –    analyze an acoustical system and represent the equivalent electrical diagram –    calculate analytically the response of an acoustical system –    draw an equivalent network to the usual couplings (electromechanical, electroacoustic) –    draw an equivalent network to an electrodynamic transducer –    calculate analytically the response (efficiency, sensitivity) of an electrodynamic transducer
      Contrôle des connaissances : Written exam - 2 hours - no documents allowed
      Informations complémentaires : Literature References : Leo L. Beranek, Tim Mellow, sound fields and transducers, Academic Press, 2012 - Mendel Kleiner, Electroacoustics, Taylor & Francis, 2013 - Martin Colloms, High Performance Loudspeakers, Wiley, 2005, 6th Edition - Joseph D’Appolito, Testing Loudspeakers , Audio Amateur Press, 1998 - Mario Rossi, Audio, Presses Universitaires Polytechniques
      On-line course
      Langue : EN
      Lieu : Le Mans
    • Matlab for audio (2 crédits ECTS)Description : Time domain computing: Matlab basics and manipulation of sound waves, sound envelopes and synchronous detection - Frequency domain:  Spectral analysis, direct and inverse Fourier transforms, frequency resolution, windowing, spectrograms. - Musical sounds: analysis & Synthesis of musical sounds - Mini Project: simulation of a microphone pair recording and writing of flanging effect func- tion.
      Objectifs : Be able to use the Matlab software for simple audio processing (time domain analysis, frequency domain analysis)
      Contrôle des connaissances : practical exam - 2 hours -  all documents allowed
      Informations complémentaires : Literature References : Ian McLoughlin, Applied Speech and Audio Processing: With Matlab Examples, Cambridge University Press, 19 fe´ vr. 2009 - 206 pages - Theodoros Giannakopoulos, Aggelos Pikrakis, Introduction to Audio Analysis: A MATLABQR Approach, Academic Press, 15 fe´ vr. 2014 - 288 pages - Alexander D. Poularikas, Understanding Digital Signal Processing with MATLAB® and solutions, CRC Press, 13 nov. 2017 - 455 pages
      On-line course
      Langue : EN
      Lieu : Le Mans
    • Loudspeaker system (4 crédits ECTS)Description : Usual loudspeaker systems (active, passive) - Usual electrical filters - Lumped elements models a usual loudspeaker systems (sealed enclosure, vented enclosure) with equivalent networks. - Measurement of loudspeaker systems characteristics (sealed enclosure, vented enclosure).
      Objectifs : Know the different loudspeaker systems types (active, passive) - Know the different electrical filter typesKnow the different acoustic loads -  Be able to model a loudspeaker system (sealed & vent enclosure, passive filters)
      Contrôle des connaissances : Written exam - 2 hours -  no documents allowed
      Informations complémentaires : Literature References : Leo L. Beranek, Tim Mellow, sound fields and transducers, Academic Press, 2012 - Mendel Kleiner, Electroacoustics, Taylor & Francis, 2013 - Martin Colloms, High Performance Loudspeakers, Wiley, 2005, 6th Edition - Joseph D’Appolito, Testing Loudspeakers , Audio Amateur Press, 1998 - Mario Rossi, Audio, Presses Universitaires Polytechniques (in French), 2007
      On-line course
      Langue : EN
      Lieu : Le Mans
    • Digital electronics 1 (1 crédits ECTS)Description : Introduction to digital electronics, digital signal processing, devices, IDE (integrated development environment). - SNR measurement, analysis of noise, interest of oversampling.
      Objectifs : Be able to analyse the quality and to choose a ADC or DAC converter.
      Langue : EN
      Lieu : Le Mans
    • Maths for acoustics I (3 crédits ECTS)Description : 13 courses of two hours mixing lectures and exercises divided in 6 chapters: - Introduction: Which problems do we want to solve ? - Finite dof systems: Mass-spring - Continuous systems: Strings, Acoustic cavities; beams, 2D and 3D problems - Strategies (analytical/numerical) to solve these problems - Matrices (Key properties of matrices, Exponential and Transfer Matrices, Key matrix fac- torisation techniques) - n degrees of freedom systems (Exponential Matrix / Transfer matrix, Modes of a finite- degree of freedom system, Resolution ) - Inner Euclidean and Hilbert Spaces (Definition, Inner products and physical systems)
      Objectifs : Expected skills : –    Advanced Matrix calculus –    Main basis of analytical resolutions methods for finite and infinite number of degrees of freedom problems (in 1D, 2D and 3D) –    Techniques of projection (Inner-products, modes) –    Notions on finite difference schemes: truncation error, order of accuracy, spectral ac- curacy, and grid resolution. - Expected knowledge : –    Be able to find the analytical expression of simple and more advanced 1D acoustic problems (strings, beams and cavities of various shapes and boundary conditions) –    Be able to construct standard finite-difference schemes (temporal and spatial). –    Be able to control the accuracy of a finite difference approximation by selecting the scheme and the grid for 1D acoustic problems.
      Contrôle des connaissances : Written exam - 2 hours - Personal notes allowed (except correction of exercises)
      Informations complémentaires : Literature References : G. Strang, Introduction à l’algèbre linéaire, Ecole Polytechnique De Montréal, 2015
      On-line course
      Langue : EN
      Lieu : Le Mans
    • Room acoustics (2 crédits ECTS)Description : Room modelling : statistical models, geometrical models, modal behaviour - Objective and subjective criteria - Measurement of reverberation time and objective criteria from impulse response (RT, STI, C80, D50) - Introduction to Catt Acoustics software
      Objectifs : Be able to understand the physical phenomena involved in the sound propagation in a room. - Know the acoustical objective and subjective criteria which describe a room. -  Be able to to control the room acoustics by passive materials. -  Be able to measure the room characteristics. -  Be able to build a numerical model of a room.
      Contrôle des connaissances :  Written exam - 2 hours - no documents allowed
      Informations complémentaires : Literature References : KUTTRUFF Heinrich. Room acoustics. Crc Press, 2016. - CREMER, Lothar et MULLER, Helmut A. Principles and applications of room acoustics. Vol.1 & 2. Chapman & Hall, 1982. - BARRON, Michael. Auditorium acoustics and architectural design. Routledge, 2009. - COX, Trevor J. et D’ANTONIO, Peter. Acoustic absorbers and diffusers: theory, design and application. Crc Press, 2009. - BERANEK, Leo.      Concert halls and opera houses:  music, acoustics, and architecture. Springer Science & Business Media, 2012.
      On-line course
      Langue : EN
      Lieu : Le Mans
    • Microphone basics (1 crédits ECTS)Description : Introduction -  Audio Systems Characterisation Microphone directivity (membrane & sound interaction) - Recording microphones (mono, stereo, multichannel) - Electrodynamic microphones (pressure microphone, ribbon microphone, unidirectional microphone)
      Objectifs : Know the technical characteristics of microphones. - Be able to choose a microphone according to the datasheet. - Be able to model (sensitivity) an electrodynamic omnidirectional microphone.
      Contrôle des connaissances :  Written exam - 1 hour 30 min -  no documents allowed
      Informations complémentaires : Literature References : Ray A. Rayburn, Eargle’s The Microphone Book:  From Mono to Stereo to Surround - A Guide to Microphone Design and Application, Taylor & Francis, 12 nov. 2012 - 466 pages - Glen Ballou, Electroacoustic Devices: Microphones and Loudspeakers, Taylor & Francis, 10 sept. 2012 - 328 pages
      On-line course
      Langue : EN
      Lieu : Le Mans
    • English (2 crédits ECTS)Objectifs :  The aim of this course if to know and practice technical english for acoustics, mechanics, electronics and electroacoustics.
      Contrôle des connaissances : Written exam - practical report (mini-project) - no document allowed
      Langue : EN
      Lieu : Le Mans
    • SeminarsDescription :  Seminars about audio given by academic, industrial or alumni
      Objectifs : Know the different activities performed in different companies - Be able to build a network of different people working companies
      Seminars course on-line
      Langue : EN
      Lieu : Le Mans
  • Semestre 2 M Acoustique - Electroacoustique
    • Acoustics (4 crédits ECTS)Description : I) INTRODUCTION : (a)   Non homogeneous differential equations: various examples in physics (b)    Toolbox : 1.Linear differential operator - 2. Boundary conditions (Fourier transform - Green’s identities) - 3.Dirac distribution - II) TIME-INDEPENDENT PROBLEM : (a)   Definition of the Green’s function - (b)    Interpretation - (c)    Homogeneous Boundary Conditions - (d) Reciprocity - (e)   Solution (Method of Variations of Parameters - Sturm-Liouville Problem - Eigenmode Expansion - Direct Method)  - III) 3D (and 2D) free space Green’s function : (a) Integral Formalism in Acoustics - (b) Introduction - (c) Green’s theorem - (d) Integral formalism in time domain - (e) Integral formalism in frequency domain - (f) Solving integral equations - (g) Boundary conditions - (h)  Examples of application
      Objectifs : Knowledge:  Green’s function theory - integral formalism in time and frequency domain  _ Skills : be able to write and use the Green’s function in usual cases (Free space (1d to 3d) - reflecting boundaries and image sources - use the integral formalism in different simple applications - Acoustic field in small cavity - Acoustic field between two infinite wall - Sound radiation by a flat piston
      Contrôle des connaissances : Written exam - 2 hours - no documents allowed
      Informations complémentaires : Literature References : Alastuey, A., Clusel, M., Magro, M., & Pujol, P. (2015). Physics and Mathematical Tools: Methods and Examples. World Scientific Publishing Company. - Duffy, D. G. (2001). Green’s Functions with Applications. Chapman & Hall.
      On-line course
      Langue : EN
      Lieu : Le Mans
    • Continuous system vibrations (2 crédits ECTS)Description : From discrete to continuous systems, elementary model for the longitudinal vibrations of a bar   - Transverse vibrations of strings -  Flexural vibrations of beams -  Transverse vibrations of membranes -  Flexural vibrations of plates -  Energy based methods : Lagrange, Rayleigh, Rayleigh – Ritz, Galerkin
      Objectifs : To be able to read specialized literature in the field, as well as to be in a position to develop small models related to vibrations in continuous media and structures.
      Contrôle des connaissances : Written exam - 2 hours - no documents allowed
      Informations complémentaires : Literature References : P.M. Morse & K.U. Ingard : “Theoretical acoustics” Princeton University Press (1986), chap- ters 1 to 5, pages 1 to 227, and chapter 14, pages 828 to 856 - A. Leissa, “Vibrations of plates”, 2nd e´ dition, Acoustical Society of America, Woodbury, New-York (1993). - S. Graham Kelly, “Advanced vibration analysis”, CRC Taylor & Francis, London (2006). - W. Weaver Jr., S.P . Timoshenko et D.H. Young, “Vibrations problems in engineering”, 5th edition, Wiley & Sons, New-York (1990). 
      On-line courses
      Langue : EN
      Lieu : Le Mans
    • Vibrations experiments (2 crédits ECTS)Description : Free and forced oscillations of a system having a single or two degrees of freedom -  Determination of mode parameters of a beam / Chladni’s vibrating plates -  Forced vibrations of a beam -  Free oscillations of a string -  Revving of an engine / order analysis -  Dynamic balancing
      Contrôle des connaissances : practical report - 1 hour - no documents allowed
      Langue : EN
      Lieu : Le Mans
    • Signal analysis I (3 crédits ECTS)Description : 1. Digital Filtering: (a) Introduction, properties of digital filters - (b) Analog systems simulation (IIR filters). Discrete-time approximation of loudspeaker behavior (practical) - (c) FIR filters design. Filtering with FIR Filters (practical) 2. Non stationary signal analysis:  (a) Introduction : stationarity vs non-stationarity, global ideas about time-frequency analysis, examples - (b) Limits of Fourier analysis and introduction to local Fourier analysis : classical Fourier transform (including time-frequency duality), Short-Time Fourier transform (definition, interpretation,  limits) (c) Frequencies : Instantaneous frequency, analytic signal, examples (favourable and un- favourable cases) - (d) Decompositions and densities : atomic decompositions (including wavelet analysis), densities (including Wigner-Ville decomposition) - 3. Acoustic Imaging: Acoustic intensimetry and beamforming - Nearfield Acoustic Holography (NAH) in cartesian coordinates -  Loudspeaker measurement with microphone arrays
      Objectifs : Expected knowledge : –   Know the basics of digital filtering –   Know the basic tools of non-stationary signal analysis (Short-time Fourier Transform, wavelet analysis, Wigner-Ville distribution) –   Know the basic acoustic imaging method - Expected skills: –   Be able to design simple FIR and IIR filters –   Be able to apply them in a context of real-world data, in order to extract informations from data - Be able to write beamforming and Nearfield Acoustic Holography (NAH) codes
      Contrôle des connaissances : Written exam - 2 hours - personal notes allowed
      Informations complémentaires : Literature References : Edward P. Cunningham, Digital filtering : an introduction, New York : J. Wiley , 1995 - Time-Frequency Analysis, L. Cohen, Prentice-Hall, 1995 - Time-Frequency / Time-Scale Analysis, P. Flandrin, Academic Press, 1999  - A Wavelet Tour in Signal Processing, S. Mallat, 3rd Ed., Academic Press, 2009 
      On-line courses
      Langue : EN
      Lieu : Le Mans
    • CAD modelling (2 crédits ECTS)Description : Basic principles and SolidWorks user interface, introduction to sketching, modeling simple parts (prismatic and revolution), use of advanced solid features (rehearsal, shells and ribs, scans, ...), use of drawings, upward assembly.
      Objectifs : Be able to use a CAD software (SolidWorks)
      Online courses
      Langue : EN
      Lieu : Le Mans
    • Loudspeaker technology (1 crédits ECTS)Description : General concepts about materials : classification of materials, general mechanical proper- ties of materials, elastic and viscoelastic materials, equations of behaviour, experimental characterization techniques (elongation, flexion, Dynamical Mechanical Analysis) -  Technologies of materials : materials for membranes, materials for motors, materials for suspension, application of materials in loudspeaker design. Examples of design process and measurement techniques. Link between materials and perceptive aspects. -  FEM simulation of loudspeakers to understand to effect of material properties on acoustic radiation
      Objectifs : Be able to choose materials (surround, spider, cone) for designing an electrodynamic loud- speaker -  Be able to design a numerical model of a loudspeaker to do a parametric study
      Contrôle des connaissances : Written exam - MCQ - 2 hours - no documents allowed
      Informations complémentaires : Literature References : Frankort, F. J. M. (1978). Vibration patterns and radiation behavior of loudspeaker cones. Journal of The Audio Engineering Society, 26(9), 609-622. - Klippel, W., & Schlechter, J. (2006, October). Measurement and visualization of loud- speaker cone vibration. In Audio Engineering Society Convention 121. Audio Engineering Society. - Klippel, W., & Schlechter, J. (2008, October). Distributed mechanical parameters describing vibration and sound radiation of loudspeaker drive units. In Audio Engineering Society Convention 125. Audio Engineering Society.  
      Online courses
      Langue : EN
    • Digital filtering (2 crédits ECTS)Description : 1. Delayed digital filtering: two-ways speaker system simulation : (a)    Electrical filters simulation with IIR - (b)    Loudspeakers simulation with IIR - (c)    Acoustic propagation simulation with FIR - (d)    Complete two-ways system simulation and auralisation - (e)   Complementary work (effect of acoustic enclosure, effect of voice coil impedance, effect of piston directivity)  - 2. Real time digital filtering
      Objectifs : Be able to design and implement FIR and IIR filters for delayed and real time signal processing
      Contrôle des connaissances : Written exam - 2 hours - all documents allowed ; practical report -
      Informations complémentaires : Literature References : Digital filtering:  discrete-Time signal processing, Oppenheim and Schafer, Prentice Hall, 2nd edition, 1999 - Digital filtering: an introduction, Edward P. Cunningham, New York : J. Wiley , 1995
      On-line courses
      Langue : EN
      Lieu : Le Mans
    • LP analog electronics (3 crédits ECTS)Description : 1. Tutorial (10h): a) BJT transistors, b) Common-emitter BJT transistor : class A amplifier, c) Common-collector BJT transistor (Push-Pull) : class B and AB amplifier, d) Heat-sink for power dissipation, e) Integrated audio power amplifier - 2. Practical (21h) audio amplifier design : a)  voltage amplifier circuit, b) current amplifier circuit , c) Push-Pull circuit, d) complete system : voltage amplifier+current amplifier+feedback, e) cabling, test, measurement and debug function by function, d) test and measurement of the complete system.
      Objectifs : Be able to design an amplifier (class A, B, AB) using BJT transistors in common-emitter and common collector mode -  Be able to design an audio amplifier using an integrated audio power amplifier and to calculate the heat-sink for power dissipation -  Be able to build and measure an audio amplifier
      Contrôle des connaissances : written exam (tutorial part) and practical exam (evaluation in practical sessions) - 2 hours - no documents allowed
      Informations complémentaires : Literature References: P. HOROWIST, W. HILL. “The art of electronic”, Cambridge university press - M. GIRARD, “Amplificateurs de puissance” , McGraw-Hill - Internet course (in French)
      On-line courses
      Langue : EN
      Lieu : Le Mans
    • Transmission lines (2 crédits ECTS)Description : General concepts on transmission lines -  Equations of acoustic transmission lines without and with viscothermal effects -  Transfer Matrix and impedance calculation -  Effect of higher order modes -  Measurement techniques of acoustic wave guides 
      Objectifs : Be able to model a transmission line (duct, horn) thanks to telegraph equation and matrix formalism
      Contrôle des connaissances : Written exam - 2 hours - no documents allowed
      Informations complémentaires : Literature References : Munjal, M. L. (2014). Acoustics of ducts and mufflers. John Wiley & Sons.- Transmission Line Theory
      On-line course
      Lieu : Le Mans
    • English (2 crédits ECTS)Objectifs : Be able to communicate easily in English in a professionnal environment
      Informations complémentaires : Literature References   Billet, C. D. (2000). Standard Technical English. Media Training Cor- poration.
      Langue : EN
    • Scientific expression (1 crédits ECTS)Description : Scientific writing and presentation : Scientific writing, Presentation, Posters, Effective visuals -Introduction to LaTeX and Beamer.
      Objectifs : Be able to write a scientific document. Be able to give an oral defense in a limited time.
      Informations complémentaires : Literature  References : Scientific Writing, D. R. Lindsay Csiro Publishing, 2011 - 122 pages - The Art of Scientific Writing: From Student Reports to Professional Publications in Chem- istry and Related Fields Hans F. Ebel, Claus Bliefert, William E. Russey, William E.. Russey John Wiley & Sons, 12 mars 2004 - 595 pages - LateX Wiki Book - LateX tutorial - Tools for drawing in LateX - Beamer guide
      online course
      Langue : EN
      Lieu : Le Mans
    • Project (4 crédits ECTS)Description : I. First phase :  (a) Bibliographic research - (b) Design of the prototype (number of transducers, transducer type, acoustic load type, electrical filter type) - (c) First simulations based on Lumped Elements Models (Akabak,...) - (d) First oral presentation - II. Second phase :  (a) Sketch of the mechanical part of the system (with a CAD software) - (b) Improved simulation of the acoustic response - (c) Validation of the mechanical design - (d) First report and second oral presentation - Third phase :  (a)   Design of the filters - (b) Building of the system - (c) Measurement of the system and comparison with simulations - (d) Final report and final oral presentation
      Objectifs : Be able to design, model, build and measure an audio prototype using a limited budget
      Contrôle des connaissances : , oral exam - 20 min - all documents allowed
      Online courses
      Langue : EN
    • Project management (1 crédits ECTS)Description : Project scope and definition -  Project planning (WBS, OBS, RACI matrix, Gantt Chart, Budget, Risk analysis)
      Objectifs : Be able to plan and organize a project.
      Contrôle des connaissances : oral exam - 2 hours - all documents allowed
      Online courses
      Langue : EN
      Lieu : Le Mans
    • Tools for job searching (1 crédits ECTS)Description : Course structure, Brainstorming and Important General Information -  CV and CL Workshop: Exchange and Help session -  Job Interview Workshop -  Communication styles by country and final Assignment -  Final Session – Job interviews
      Objectifs : Be able to write CV and Covering letter (CL) in order to apply for a job in a specific country. 
      Contrôle des connaissances : Writing a CV and a CL according to a job offer
      Informations complémentaires : Literature  References : Careers and Employability Service, University of Kent - Eva Newman, Job Searching Tools for You! CreateSpace Independent Publishing Platform, 31 janv. 2016 - 82 pages
      Online courses
      Langue : EN
      Lieu : Le Mans
  • Semestre 3 M Acoustique - Electroacoustique
    • 3D sound (2 crédits ECTS)Description : Spatial perception (how the auditory system localizes sounds), stereophony and multichannel audio Binaural technology, Holophony and WaveField Synthesis, Ambisonics and Higher Order Ambisonics Principle of sound zones controls
      Objectifs : Know the auditory perception cues Know the different techniques for 3D sound  Know how to control the sound field in a defined region
      Contrôle des connaissances : MCQ - 2 heures - no documents allowed
      Informations complémentaires : Jens Ahrens, Analytic Methods of Sound Field Synthesis, Springer Science & Business Media, 25 janv. 2012 - 300 pages Rozenn Nicol, Binaural Technology, Audio Engineering Society, 2010 - 77 pages Roginska de Agnieszka, Paul Geluso, Immersive Sound: The Art and Science of Binaural and MultiChannel Audio, Audio Engineering Society, 2017  39  Jens Blauert, The Technology of Binaural Listening, Springer Science & Business Media, 7 juin 2013 - 511 pages
    • Loudspeaker modelling (2 crédits ECTS)Description : Lumped parameter modelling and measurement, state space modelling of linear systems (Loudspeaker, loudspeaker in vented box) Modelling of non linear effects in loudspeakers. Study of THD and IMD. State space mod- elling of nonlinear loudspeaker Physical causes and nonlinear symptoms, Diagnostics on regular large signal performance, Diagnostics on irregular loudspeaker defects, Power Handling, Heating, Aging, Climate, Meaningful Loudspeaker Specifications
      Objectifs : Be able to model analytically the main non linearities (Le, Bl, Cms) Be able to model analytically thermal effects in a loudspeaker Be able to make model the loudspeaker radiation taking into account modal vibration Be able to make a simulation of a non linear loudspeaker (electrical and mechanical parts) Be able to make an auralization of non linear loudspeakers
      Contrôle des connaissances : MCQ - 2 hours - no documents allowed
      Informations complémentaires : Literature References  Klippel, Wolfgang. Tutorial: Loudspeaker nonlinearities—Causes, parameters, symptoms. Journal of the Audio Engineering Society 54.10 (2006): 907-939. Klippel, Wolfgang. ””Nonlinear modeling of the heat transfer in loudspeakers. Journal of the Audio Engineering Society 52.1/2 (2004): 3-25. Agerkvist, Finn. Modelling loudspeaker non-linearities. Audio Engineering Society Confer- ence: 32nd International Conference: DSP For Loudspeakers. Audio Engineering Society, 2007. Jakobsson, David, and Marcus Larsson. Modelling and compensation of nonlinear loud- speaker (2010).  
      On-line course
      Lieu : Le Mans
    • Microphone modelling (1 crédits ECTS)Description : Generalities on microphones Basic modelling of microphones Advanced modelling of microphones
      Objectifs : Be able to model and electrostatic microphone sensitivity taking into account the effect of viscothermal losses
      Contrôle des connaissances : MCQ - 2 hours - no documents allowed
      On-line course
    • Electrodynamic motors (2 crédits ECTS)Description : 1. Basics of magnetism(a)    Magnetic field (demonstration of magnetic field, sources of magnetic field, mathematical representation of magnetic field)(b)    Electromagnetism: the phenomena associated with electric and magnetic fields and their interactions with each other and with electric charges and currents.(c)    Magnetic materials (Magnetic moment, Atomic origin of magnetism, Magnetic material model: Amperian model, Magnetization and magnetic fields quantities, Reaction of magnetic materials submitted to an external magnetic field: Susceptibility and permeability, demagnetizing field)(d)    Ferromagnetic materials (Classification of magnetic materials: diamagnetic, paramagnetic and ferromagnetic. Domain structure, Magnetization process: hysteresis loop, Soft and hard ferromagnetic materials, Design of permanent magnet: load line and, working point, Evershed’s criterion) 2. Application of magnetism to loudspeaker motor design(a)    Part 1: magnetostatics (Recap of magnetic materials characteristics, Loudspeaker motor structure, Circuit analogy, From Maxwell’s equations to design principles, Exam- ples)(b)    Part 2: voice coil design (Parameters in voice coil design, Goals and constraints, Worked example) 3. 2D FEM modelling of motors (with free software FEMM)
      Objectifs : Know the basics of magnetism Know the physics of an electrodynamic motor Be able to model an electrodynamic motor using a FEM software
      Contrôle des connaissances : MCQ + practical exam - 2 hours - no documents allowed
      Informations complémentaires : Literature References  Magnetism I & II, E. du Tre´ molet de Lacheisserie, PUG, 1999 (in French) Introduction to solid state physics, Ch. Kittel, Wiley, 2004 Solid state physics , N. Ashcroft et D. Mermin , EDP Sciences Magnetism and magnetic materials, J.M.D. Coey, Cambridge edition Peter Campbell, “Permanent Magnet Materials and their Application”, Cambridge University Press, 1996
      On-line course
    • Mini and micro Transducers (1 crédits ECTS)Description : 1. General models of headphones and earphones (lumped elements model of the loudspeaker, model of the ear)(a)    Introduction(b)    Classification(c)    Lumped Elements Modeling (headphone without ear, sealed enclosure, enclosure with leakage)(d)    Headphone with ear (model of the ear, coupling the headphone with the ear)2. Measurement techniques for mini and micro transducers(a)    Microphones : ECM and MEMS - Specifications and measurements(b)    Micro-speakers : Dynamic and Balanced Armature - Specifications and measurements(c)    Two-port modelling                                                                                   (d)    Measurement hardware : couplers and acquisition systems 3. MEMS microphones(a)   Microphone history(b)    Microphone design criteria(c)    Microphone modelling(d)    MEMS microphone as measuring microphones, calibration
      Objectifs :   Be able to model the response of a headphone Know the technology of micro and mini transducers Know the principle of MEMS transducers
      Contrôle des connaissances : Written exam - 2 hours - Personal notes allowed
      Informations complémentaires : Literature References  Borwick, J. (Ed.). (2012). Loudspeaker and headphone handbook. CRC Press. Beranek, L. L., & Mellow, T. J. (2012). Acoustics: sound fields and transducers. Academic Press. Søren Jønsson, Bin Liu, Lars B. Nielsen, Andreas Schuhmacher, Simulation of Couplers, AES, Workshop 7, 2003 March 23rd
      On-line course
    • Numerical Vibroacoustics (3 crédits ECTS)Description : Introduction of BEM principles. Introduction to ABEC (Acoustic Boundary Element Calculator). Study of simple cases Simple models of acoustics in closed and opened systems by FEM and/or BEM approaches with Comsol. Computation of vibrations modes for structures and acoustic modes for closed cavities by FEM, vibroacoustic coupling on the solid / fluid interface, Applications to more complex systems.
      Objectifs : Be able to use Boundary Elements Modelling and Finite Elements Modelling software (ABEC, COMSOL) for simple applications.
      Contrôle des connaissances : practical report
      Lieu : Le Mans
    • Transducers measurements (2 crédits ECTS)Description : Microphones measurements techniques (measurement microphone data sheet, relative calibration, absolute calibration) Loudspeakers measurement techniques (advanced approaches in measurements using a sound card and a programming platform, advanced approaches in loudspeaker measure- ments leading to models at higher levels) Practicals on measurement systems, loudspeakers, headphones and microphones
      Objectifs : Know the principle of measurement microphones Know the usual techniques for microphone calibration Be able to develop a measuring test bench using a sound card and a programming software Be able to measure different Transducers (microphone, loudspeaker, headphone, earphones) according to the usual standards
      Contrôle des connaissances : MCQ - 2 hours - no documents allowed
      Informations complémentaires : Literature References  Measurement microphones, Bruel & Kjaer, 1994 Frederiksen, E. (2013). Acoustic metrology–an overview of calibration methods and their uncertainties. International Journal of Metrology and Quality Engineering, 4(2), 97-107. Stan, G. B., Embrechts, J. J., & Archambeau, D. (2002). Comparison of different impulse response measurement techniques. Journal of the Audio Engineering Society, 50(4), 249- 262. Farina, A. (2000, February). Simultaneous measurement of impulse response and distortion with a swept-sine technique. In Audio Engineering Society Convention 108. Audio Engineering Society. Novak, A., Simon, L., Kadlec, F., & Lotton, P. (2010). Nonlinear system identification using exponential sweptsine signal. IEEE Transactions on Instrumentation and Measurement, 59(8), 2220-2229. International standard IEC 60268-5, Sound system equipment – Part 5: Loudspeakers International standard IEC 60268-7:2010, Sound system equipment - Part 7: Headphones and earphones International standard IEC 62458:2010 Sound system equipment - Electroacoustical transducers - Measurement of large signal parameters
      On-line course
    • Signal analysis II (2.5 crédits ECTS)Description : Linear signal modeling  –   Identification of measured FRF–   Autoregressive, Moving Average, Autoregressive and Moving Average models–   Linear prediction–   Modern Power Spectrum Estimation–   Pisarenko, Prony methods, decomposition in subspaces  AcousAcoustic imaging with holography and beamforming  –   Bartlett processing, Capon and Music–   Deconvolution–   Holography for non stationary sources
      Objectifs : Be able to implement autoregressive models Be able to use and implement parametric Power Spectrum Estimation of a signal  Be able to use and implement array processing methods  
      Contrôle des connaissances : Written exam + practical report - 2 hours - all documents allowed 
      Informations complémentaires : Literature References  Digital Signal Processing: Principles, Algorithms and Applications (J. G. Proakis and D. G. Manolakis), Upper Saddle River, NJ: Prentice Hall, 1996.   Discrete-Time Signal Processing (A. V. Oppenheim and R. W. Schafer), Englewood Cliffs, NJ: Prentice Hall, 1989.   Modern Spectral Estimation (S. M. Kay), Englewood Cliffs, NJ: Prentice Hall, 1988.   Fourier Acoustics: Sound Radiation and Nearfield Acoustic Holography (E. G. Williams), Academic Press, New-York, 1999.
    • Adaptive filtering (2 crédits ECTS)
    • Power electronics (2 crédits ECTS)
    • Advanced Transducer Project (6 crédits ECTS)
    • Radiation of transducers (3.5 crédits ECTS)
    • English (1 crédits ECTS)Description : Writing / correction of a 2 pages paper presenting the first year project Work on a 3 minutes thesis oral presentation (analysis of existing presentations, prepara- tion and restitution of an oral presentation) Writing / correction of document presenting the second year project Writing / presentation of a poster presenting the second year project
      Objectifs : Be able to present a scientific work (project) using a poster and an 3 minutes thesis presentation.
      Contrôle des connaissances : Continuous assessment - 2 hours - no documents allowed
      Informations complémentaires : Literature References    Billet, C. D. (2000). Standard Technical English. Media Training Corporation. 
      On-line course
      Lieu : Le Mans
  • Semestre 4 M Acoustique - Electroacoustique
    • Numerical modelling of Transducers (4 crédits ECTS)Description : BEM modelling (ABEC) of electroacoustical devices (loudspeaker + load + radiation) -  FEM modelling (COMSOL) of compression chamber loudspeaker 
      Objectifs : Be able to model real electroacoustical devices using BEM / FEM softwares (ABEC, COMSOL)
      Contrôle des connaissances : practical exam - 2 x 3 hours - no documents allowed
      Informations complémentaires : Literature References : Roger Pryor, Multiphysics Modeling Using COMSOL?: A First Principles Approach, Jones & Bartlett Learning, 2011 - 852 pages - Comsol application gallery - ABEC Software
      Langue : EN
    • Master's thesis (700h) (26 crédits ECTS)Objectifs : Be able to apply the skills and knowledge acquired during semesters 1, 2 and 3 during a 5 months internship (in a company or a laboratory)
      Contrôle des connaissances : internship report + oral defense - 45 min 
      Lieu : Le Mans

Contrôle des connaissances

*

Aménagements particuliers

*

Stages

*

Et après

Poursuite d'études

Poursuite d'études à l'étranger

*

Insertion professionnelle

Electro Acoustics is an exciting area with multi-disciplinary studies of signal, electronics, sound and vibration phenomena. Our graduates are employed world-wide by companies, research centres and authorities involved in hearing aid systems, telephones, transducer manufacturing, audio-system engineering, sound and vibrations measurement equipment.

  • Typical examples of career opportunities as a specialist in electroacoustics are:
    • Consumer electronics (phones, multimedia, nomad devices)
    • Public address systems in buildings
    • High power sound reinforcement for shows and events
    • Transducers for automotive, aeronautical and rail transport
    • Environment & health (noise reduction, hearing aids, …)

Passerelles et ré-orientation

*

Composante

Lieu(x) de la formation

  • Le Mans

Contact(s) administratif(s)

UFR Sciences et Techniques - Scolarité

Email : sco-sciences @ univ-lemans.fr

Partagez : FacebookTwitterLinkedInMailImprimez